Considering the needs of limited resources of the university there should be assessment regarding the needs of the university.

Goals and purpose of Life Cycle Assessment

The goal of LCA is to compare the full range of environmental and social damages assignable to products and services, to be able to choose the least burdensome one. At present it is a way to account for the effects of the cascade of technologies responsible for goods and services. It is limited to that, though, because the similar cascade of impacts from the commerce responsible for goods and services is unaccountable because what people do with money is unrecorded. As a consequence LCA succeeds in accurately measuring the impacts of the technology used for delivering products, but not the whole impact of making the economic choice of using it.

The term 'life cycle' refers to the notion that a fair, holistic assessment requires the assessment of raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence. The sum of all those steps - or phases - is the life cycle of the product. The concept also can be used to optimize the environmental performance of a single product (ecodesign) or to optimize the environmental performance of a company.

Four Main Phases

According to the ISO 14040 and 14044 standards, a Life Cycle Assessment is carried out in four distinct phases.

Goal and scope

In the first phase, the LCA-practitioner formulates and specifies the goal and scope of study in relation to the intended application. The object of study is described in terms of a so-called functional unit. Apart from describing the functional unit, the goal and scope should address the overall approach used to establish the system boundaries. The system boundary determines which unit processes are included in the LCA and must reflect the goal of the study. In recent years, two additional approaches to system delimitation have emerged. These are often referred to as ‘consequential’ modeling and ‘attributional’ modeling. Finally the goal and scope phase includes a description of the method applied for assessing potential environmental impacts and which impact categories that are included.

Life cycle inventory[/b]

This second phase 'Inventory' involves data collection and modeling of the product system, as well as description and verification of data. This encompasses all data related to environmental (e.g., CO2) and technical (e.g., intermediate chemicals) quantities for all relevant unit processes within the study boundaries that compose the product system. Examples of inputs and outputs quantities include inputs of materials, energy, chemicals and 'other' - and outputs of air emissions, water emissions or solid waste. Other types of exchanges or interventions such as radiation or land use can also be included.

Usually Life Cycle Assessments inventories and modeling are carried out using dedicated software packages. Depending on the software package used it is possible to model life cycle costing and life cycle social impacts in parallel with environmental life cycle.

The data must be related to the functional unit defined in the goal and scope definition. Data can be presented in tables and some interpretations can be made already at this stage. The results of the inventory is an LCI which provides information about all inputs and outputs in the form of elementary flow to and from the environment from all the unit processes involved in the study.

Life cycle impact assessment

The third phase 'Life Cycle Impact Assessment' is aimed at evaluating the contribution to impact categories such as global warming, acidification, etc. The first step is termed characterization. Here, impact potentials are calculated based on the LCI results. The next steps are normalization and weighting, but these are both voluntary according the ISO standard. Normalization provides a basis for comparing different types of environmental impact categories (all impacts get the same unit). Weighting implies assigning a weighting factor to each impact category depending on the relative importance. The weighting step is not always necessary to create a so called “single indicator”. See for instance the prevention based model of the Eco-costs.

Importance of Data

A life cycle analysis is only as valid as its data; therefore, it is crucial that data used for the completion of a life cycle analysis is accurate and current. When comparing different life cycle analysis with one another, it is crucial that equivalent data is available for both products or processes in question. If one product has a much higher availability of data, it cannot be justly compared to another product which has less detailed data.

The validity of data should always be a concern with life cycle analyses. Since we are living in a global world and economy, new processes, manufacturing methods, and materials are introduced to various processes and products. Therefore, it is important to have current data when performing a LCA. If data from 5 to 10 years in the past is used, the LCA will not be accurate, because the quantitative analysis will not reflect the current methods utilized in the process or product. Therefore, drawing conclusions from a report using such data will be ineffective, since the data is unavailable. Some products, whose processes have not changed in 5 to 10 years (if there are any) will be exempt from this. When analyzing electronics, such as cell phones or computers, for example, the most current data is necessary. Since new computer and cell phone models are created every few months, the results of a life cycle analysis of a 3-year-old computer system will often not be applicable to current systems.

Variants

Cradle-to-grave

Cradle-to-grave is the full Life Cycle Assessment from manufacture ('cradle') to use phase and disposal phase ('grave'). For example, trees produce paper, which can be recycled into low-energy production cellulose (fiberised paper) insulation, then used as an energy-saving device in the ceiling of a home for 40 years, saving 2,000 times the fossil-fuel energy used in its production. After 40 years the cellulose fibers are replaced and the old fibers are disposed of, possibly incinerated. All inputs and outputs are considered for all the phases of the life cycle.

Cradle-to-gate

Cradle-to-gate is an assessment of a partial product life cycle from manufacture ('cradle') to the factory gate (i.e., before it is transported to the consumer). The use phase and disposal phase of the product are usually omitted. Cradle-to-gate assessments are sometimes the basis for environmental product declarations (EPD).

Cradle to cradle

Cradle-to-cradle is a specific kind of cradle-to-grave assessment, where the end-of-life disposal step for the product is a recycling process. From the recycling process originate new, identical products (e.g., glass bottles from collected glass bottles), or different products (e.g., glass wool insulation from collected glass bottles).

Gate-to-gate

Gate-to-Gate is a partial LCA looking at only one value-added process in the entire production chain.

Well-to-wheel

Well-to-wheel is the specific LCA of the efficiency of fuels used for road transportation. The analysis is often broken down into stages such as "well-to-station" and "station-to-wheel, or "well-to-tank" and "tank-to-wheel".

The factor "Tp = Petroleum refining and distribution efficiency = 0.830" from the DOE regulation accounts for the "well-to-station" portion of the gasoline fuel cycle in the USA. To convert a standard Monroney sticker value to a full cycle energy equivalent, convert with Tp. For example, the Toyota Corolla is rated at 28 mpg station-to-wheel. To get the full cycle value, multiply mpg by Tp=0.83 to account for the refining and transportation energy use - 23.2 mpg full cycle. The same adjustment applies to all vehicles fueled completely with gasoline, therefore, Monroney sticker numbers can be compared to each other with or without the adjustment. A recent study examined well-to-wheels energy and emission effects of various vehicle and fuel systems.
Economic Input-Output Life Cycle Assessment

EIOLCA, or Economic Input-Output LCA involves use of aggregate sector-level data on how much environmental impact can be attributed to each sector of the economy and how much each sector purchases from other sectors. Such analysis can account for long chains (for example, building an automobile requires energy, but producing energy requires vehicles, and building those vehicles requires energy, etc.), which somewhat alleviates the scoping problem of process LCA; however, EIO-LCA relies on sector-level averages that may or may not be representative of the specific subset of the sector relevant to a particular product and therefore is not suitable for evaluating the environmental impacts of products. Additionally the translation of economic quantities into environmental impacts is not validated.

Life cycle energy analysis

Life cycle energy analysis (LCEA) is an approach in which all energy inputs to a product are accounted for, not only direct energy inputs during manufacture, but also all energy inputs needed to produce components, materials and services needed for the manufacturing process. An earlier term for the approach was energy analysis.
With LCEA, the total life cycle energy input is established.

Reference:
http://en.wikipedia.org/wiki/Life_cycle_assessment

0 comments:

Post a Comment

Followers

AbOuT Me ;)

My photo
HeLLo...just CaLL me jusip for short, 18 yrs of age 3rd Year sTudent Of USEP(Obrero Campus)

ChatBoX